TABLE II

FLUX WEIGHTING FACTORS FOR DIFFERENT ARRAY SHAPES, D $p = \emptyset$

	Array Shape	$p = \cancel{p}_{c}$
1.	Sphere	$\frac{\sin (\pi r/R')}{\pi r/R'}$
2.	Slab (Flux distribution measures perpendicular to face)	$\cos\left(\frac{\pi z}{2H}\right)$
3.	Slab (Flux distribution measures parallel to face)	$\cos\left(\frac{\pi x}{2W}\right)\cos\left(\frac{\pi y}{2L}\right)$
4.	Parallelepiped or Cube (For cube W' = L' = H')	$\cos\left(\frac{\pi x}{2W}\right)\cos\left(\frac{\pi y}{2L}\right)\cos\frac{\pi z}{2H}$
5•	Infinite Cylinder	$J_{o}\left(\frac{j_{o}r}{R'}\right)$
6.	Finite Cylinder	$J_{o}\left(\frac{j_{o}r}{R'}\right)\cos\left(\frac{\pi z}{2H'}\right)$

 $j_0 = 2.405.$

 ϕ_c = Flux at the center of the array.

= Flux at any given point in the array.

For a homogeneous reactor, the primed letters have the conventional meanings of being the actual respective physical dimensions of the reactor plus an extrapolation distance determined by the reactor conditions; for symmetric geometries, all measurements are made from the geometric center of the reactor, which is also the point of greatest flux. For the analogous multi-unit arrays as described, these primed letters also represent the physical dimensions of the array, where these physical dimensions are considered as being bounded by the centers of the outer-most units, plus an "extrapolation length" which, for single-tier squarearrays, is equal to one center-to-center spacing of the units in the array; all measurements are also made from the geometric center of the array.

When material bucklings, migration areas and k_{∞} are available for the material in a regular array of identical units, the following equations may be used to calculate k_a :

$$k_{u} = \frac{1 + M^{2} B_{m}^{2}}{1 + M^{2} B_{g}^{2}}$$
 (e)

1-U, the leakage probability =
$$\frac{M^2 B_g^2}{1 + M^2 B_g^2}$$
 (f)

Substituting (e) and (f) into equation (d):

$$k_{a} = \frac{\frac{1 + M^{2}B_{m}^{2}}{1 + M^{2}B_{g}^{2}}}{1 - \frac{M^{2}B_{g}^{2}}{1 + M^{2}B_{g}^{2}}\sum(q_{i} Q_{fi})}$$
(g)

$$k_{a} = \frac{1 + M^{2} B_{m}^{2}}{1 + M^{2} B_{g}^{2} \left[1 - \sum (q_{i} \Omega_{fi})\right]} \text{ or } (g)$$

$$= \frac{k_{\infty}}{1 + M^{2} B_{g}^{2} \left[1 - \sum (q_{i} \Omega_{fi})\right]}$$

If k, is known:

$$k_{a} = \frac{k_{u}}{1 - \left[\frac{M^{2}B_{g}^{2}\sum(q_{i} \Omega_{fi})}{1 + M^{2}B_{g}^{2}}\right]}$$
(h)